Bimaterial Composites via Colloidal Rolling Techniques: II, Sintering Behavior and Thermal Stresses

نویسندگان

  • Mohan Menon
  • I-Wei Chen
چکیده

Shrinkage behavior and crack formation during firing have been investigated for Al2O3/Ce-TZP composites that have been fabricated by colloidal rolling and folding. These composites show improved sinterability and sinter isotropically after repeated rolling. Interface instability in rolling creates corrugated interfaces with large layer waviness; therefore, rolling can substantially alleviate the in-plane sintering constraints, which leads to improved sinterability. A loss of sintering anisotropy also is observed and is directly correlated to the microstructure instability, which is coincident with the laminate–cellular transition. Sintering cracks during heating and thermal cracks during cooling both are limited to the thick Ce-TZP layers in the composites. The critical layer thickness and the normalized crack spacing of the thermal cracks follow the predicted behavior of elasticity theory. Thus, crack-free, high-density Al2O3/Ce-TZP composites with either a laminate or cellular microstructure can be obtained, with a layer thickness of 4–60 μm, via pressureless sintering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bimaterial Composites via Colloidal Rolling Techniques: III, Mechanical Properties

The mechanical properties of layered Ce-TZP/Al2O3 composites with laminate and cellular morphologies have been investigated. The strength and toughness increase as the layer thickness decreases, and the amount of transformation in the Ce-TZP layer increases discontinuously at the laminate/cellular transition. Very high strengths (1.1 GPa) and toughnesses (16 MPa?m1/2) have been obtained in some...

متن کامل

Polymeric nanolayers as actuators for ultrasensitive thermal bimorphs.

Polymeric nanolayers are introduced here as active, thermal-stress mediating structures facilitating extremely sensitive thermal detection based upon the thermomechanical response of a bimaterial polymer-silicon microcantilever. To maximize the bimaterial bending effect, the microcantilever bimorph is composed of stiff polysilicon, with a strongly adhered polymer deposited via plasma-enhanced c...

متن کامل

Evaluation of Thermo-mechanical stress in work rolls of ring rolling mill under thermal and mechanical loading

The defect in work rolls directly influence the forming cost and the final shape of the product. The researchers tend to investigate the thermo-mechanical stress in work roll of rolling machines. These stresses may reduce the roll life. Since the investigation of the thermo-mechanical stress in work roll with real-conditions is complex, comprehensive studies by means of numerical methods are av...

متن کامل

EFFECT OF NICKEL AND COBALT ADDITIONS ON INFILTRATION BEHAVIOR, MICROSTRUCTURE AND HARDNESS OF W-AG COMPOSITES

In this research, infiltration behavior of W-Ag composite compacts with Nickel and Cobalt as additives has been investigated. Nickel and Cobalt were added to Tungsten powder by two distinct methods: mixing elementally and reduction of salt solution. The coated Tungsten powders were compacted under controlled pressures to make porous skeleton with 32-37 vol. % porosity. Infiltration process was ...

متن کامل

The Effect of Carbon Nanotubes on the Mechanical Properties of Wood Plastic Composites by Selective Laser Sintering

Wood-plastic composites (WPCs) made by selective laser sintering (SLS) approach of 3D printing offer many advantages over single polymer materials, such as low cost, sustainability, and better sintering accuracy. However, WPCs made via SLS are too weak to have widespread applications. In order to increase the mechanical properties of WPCs, a novel type of WPCs containing 0, 0.05, 0.1 and 0.15 w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999